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Correlation vs. Causation
• fundamental issue faced by those doing empirical work in 

economics: disentangling causality from correlation


• We say that two economic variables are correlated if they 
move together.


• But this relationship is causal only if one of the variables 
is causing the movement in the other.


• identification problem: given that two series are 
correlated, how do you identify whether one series is 
causing another? 



Correlation vs. Causation
• Analysis


• Step 1: Document the correlation, that is whether data on two measures move together.


• Step 2: Assess whether the movements in one measure are causing the movements in the other.


• For any correlation between two variables A and B, there are three possible explanations, one or more of which 
could result in the correlation:


• A is causing B.


• B is causing A. 


• Some third factor is causing both. 


• Well designed research thus needs to make valid causal inferences. Ideally, such a design does three things: 


• 1. Covariation: demonstrates that the alleged cause (call it X) does in fact covary (corelate) with the supposed 
effect, Y. 


• 2. Time order: The research must show that the cause preceded the effect: X must come before Y in time. After 
all, can an effect appear before its cause? 


• 3. Elimination of possible alternative causes, sometimes termed "confounding factors”: The research must be 
conducted in such a way that all possible joint causes of X and Y have been eliminated. 



Golden standard for assessing 
causation: Randomized trials

• How can researchers address the problem of assessing causation? The best 
solution is through the gold standard of testing for causality: randomized trials. 


• randomized trial: The ideal type of experiment designed to test causality, whereby 
a group of individuals is randomly divided into a treatment group, which receives 
the treatment of interest, and a control group, which does not. 


• Randomized trials involve taking a group of volunteers and randomly assigning 
them to either a treatment group, which gets the treatment, or a control group, 
which does not. Effectively, volunteers are assigned to treatment or control by 
the flip of a coin. 


• treatment group: The set of individuals who are subject to an intervention being 
studied. 


• control group: The set of individuals comparable to the treatment group who are 
not subject to the intervention being studied. 



Golden standard for assessing 
causation: Randomized trials



The problem of bias
• We should always start our analysis of an empirical methodology with a simple question: Do the 

treatment and control groups differ for any reason other than the treatment? 


• The non-treatment-related differences between treatment and control groups are the fundamental 
problem in assigning causal interpretations to correlations. We call these differences bias, a term that 
represents any source of difference between treatment and control groups that is correlated with the 
treatment but is not due to the treatment.


• By definition, such differences do not exist in a randomized trial, since the groups do not differ in any 
consistent fashion, but rather only by the flip of a coin. 


• Thus, randomized treatment and control groups cannot have consistent differences that are correlated 
with treatment, since there are no consistent differences across the groups other than the treatment. As 
a result, randomized trials have no bias, and it is for this reason that randomized trials are the gold 
standard for empirically estimating causal effects. 


• The description of randomized trials here relies on those trials having fairly large numbers of treatments 
and controls (large sample sizes). Having large sample sizes allows researchers to eliminate any 
consistent differences between the groups by relying on the statistical principle called the law of large 
numbers: the odds of getting the wrong answer approaches zero as the sample size grows. 



Possible problems with 
randomized trials

• For many questions of interest, randomized trials are unfortunately not available, because they 
can be enormously expensive, take a very long time to plan and execute, and often raise 
difficult ethical issues (e.g new medical procedures)


• Moreover, even the gold standard of randomized trials has some potential problems. First, the 
results are only valid for the sample of individuals who volunteer to be either treatments or 
controls, and this sample may be different from the population at large. For example, those in a 
randomized trial sample may be less averse to risk or they may be more desperately ill. Thus, 
the answer we obtain from a randomized trial, while correct for this sample, may not be valid 
for the average person in the population. 


• A second problem with randomized trials is that of attrition: individuals may leave the 
experiment before it is complete. This is not a problem if individuals leave randomly, since the 
sample will remain random. Suppose, however, that the experiment has positive effects on half 
the treatment group and negative effects on the other half, and that as a result the half with 
negative effects leaves the experiment before it is done. If we focus only on the remaining half, 
we would wrongly conclude that the treatment has overall positive impacts. 


• attrition: Reduction in the size of samples over time, which, if not random, can lead to biased 
estimates. 



Estimating causation with 
observational data 

• data from randomized trials are not always available when important empirical 
questions need to be answered. Typically, what the analyst has instead are 
observational data.


• observational data: data generated by individual behavior observed in the real 
world, not in the context of deliberately designed experiments.


• For example, instead of information on a randomized trial of a new medicine, we 
may simply have data on who took the medicine and what their outcomes were.


• There are several well-developed methods that can be used by analysts to 
address the problem of bias with observational data, and these tools can often 
closely approximate the gold standard of randomized trials


• In other words, we can use observational data to estimate causal effects instead 
of just correlations.The major concern is how to overcome any potential bias so 
that we can measure the causal relationship (if there is one).



Time Series Analysis 
• One common approach to measuring causal effects with observational 

data is time series analysis, the analysis of the comovement of two 
series over time. 



Time Series Analysis 
• Problems with Time Series Analysis 


• Although the time series correlation can be striking, it does not necessarily 
demonstrate a causal effect. Other factors get in the way of a causal 
interpretation of the correlation over time; and these factors can cause bias 
in this time series analysis because they are also correlated with the outcome 
of interest. 


• When Is Time Series Analysis Useful? 


• Is all time series analysis useless? Not necessarily. In some cases, there may 
be sharp breaks in the time series that are not related to third factors that 
can cause bias.


• Thus, while time series correlations are not very useful when there are long-
moving trends in the data, they are more useful when there are sharp breaks 
in trends over a relatively narrow period of time. 



Time Series Analysis 



Cross-Sectional Regression 
Analysis 

• A second approach to identifying causal effects is cross-sectional regression analysis, 
a statistical method for assessing the relationship between two variables while holding 
other factors constant. By cross-sectional, we mean comparing many individuals at one 
point in time, rather than comparing outcomes over time as in a time series analysis. 


• Regression analysis describes (and quantifies) the relationship between the variable that 
you would like to explain (the dependent variable) and the set of variables that you think 
might do the explaining (the independent variables). 


• The best approximation of such relationship is shown by the regression line. There is no 
single line that fits perfectly through this set of data points; instead, the linear regression 
finds the line that comes closest to fitting through the cluster of data points.


• Technically, this line is the one that minimizes the sum of squared distances of each point 
from the line. As a result, one major concern with linear regression analysis is outliers. An 
outlier, which is a point that is very far from the others, exerts a strong influence on this 
line, since we are minimizing the sum of squared distances, so a large distance has an 
exponentially large effect. For this reason, analysts often use other approaches that are 
less sensitive to such outlying observations. 



Cross-Sectional Regression 
Analysis 



Cross-Sectional Regression 
Analysis 

• The relationship between two variables approximated by the regression line is, 
again, not neccessarily causal. Therefore, we don’t interrpret the results as “a x% 
reduction/rise in variable A is causing y% reduction/rise in variable B” but rather 
“a x% reduction/rise in variable A is associated with y% reduction/rise in variable 
B”


• Regression analysis has one potential advantage over correlation analysis in 
dealing with the problem of bias: the ability to include control variables. Control 
variables in regression analysis take into account other differences across 
individuals in a sample, so that any remaining correlation between the dependent 
variable and independent variable can be interpreted as a causal effect.


• However, in reality, control variables are unlikely to ever solve the problem of bias 
completely, as the key variables we want, are often impossible to measure in data 
sets. Usually, we have to approximate the variables we really want with what is 
available. These are imperfect proxies, however, so they don’t fully allow us to 
control for differences.



Cross-Sectional Regression 
Analysis 

• y = α + βx + e 


• where


• α = constant (value for x = 0)


• β = slope coefficient, represents the change y per unit 
change of x


• e = error term, which represents the difference for each 
observation between its actual value and its predicted 
value based on the model



Quasi-Experiments 
• As noted earlier, public finance researchers cannot set up randomized trials and run experiments for 

every important behavior that matters for public policy. We have examined alternatives to randomized 
trials such as time series and cross-sectional regression analysis, but have also seen that these 
research methods have many shortcomings which make it hard for them to eliminate the bias 
problem. 


• Is there any way to accurately assess causal influences without using a randomized trial? Is there an 
alternative to the use of control variables for purging empirical models of bias? 


• Over the past two decades, empirical research in public finance has become increasingly focused on 
one potential middle-ground solution: the quasi-experiment, a situation that arises naturally when 
changes in the economic environment (such as a policy change) create nearly identical treatment and 
control groups that can be used to study the effect of that policy change. In a quasi-experiment, 
outside forces (such as those instituting the policy change) do the randomization for us.


• With quasi-experimental studies, unlike true experiments, we can never be completely certain that we 
have purged all bias from the treatment–control comparison. Quasi-experimental studies use two 
approaches to try to make the argument that they have obtained a causal estimate.The first is 
intuitive: trying to argue that, given the treatment and control groups, it seems very likely that bias has 
been removed.The second is statistical: to continue to use alternative or additional control groups to 
confirm that the bias has been removed. 



Quasi-Experiments 
• Difference-in-difference estimator: The technique that tries to combine time series and cross-sectional 

analyses to address the problems with each. By comparing the change in population A to the change in 
population B, the estimator controls for other time series factors that bias the time series analysis within 
population A. Likewise, by comparing the change within each population, rather than just comparing the 
two populations at a point in time, the estimator controls for omitted factors that bias cross-sectional 
analysis across the two populations. 


• Searching for a change in variable X


• 2 periods (Y, Z)


• 2 populations (A,B)


• In period Y, the policy is the same for A and B


• In period Z, there is new policy for A, while the policy for B is not changed


• x (population A, year Y)  - x (population A, year Z) = Treatment effect + Bias


• x (population B, year Y)  - x (population B, year Z) = Bias


• Difference  = Treatment effect



Quasi-Experiments 



Structural Modeling 
• The randomized trials and quasi-experimental approaches previously described have the distinct 

advantage that, if applied appropriately, they can address the difficult problem of distinguishing 
causality from correlation.Yet they also have two important limitations. First, they only provide an 
estimate of the causal impact of a particular treatment. Say that an experiment found that cutting 
variable A by 15% raised variable B rates by 4.5 percentage points. This is the best estimate of the 
impact of cutting variable A by 15%, but it may not tell us much about the impact of cutting variable 
A by 30%, or of raising variable A by 15%. That is, we can’t necessarily extrapolate from a particular 
change in the environment to model all possible changes in the environment. These approaches 
give us a precise answer to a specific question, but don’t necessarily provide a general conclusion 
about how different changes in something might affect behavior. 


• The second limitation is that these approaches can tell us how outcomes change when there is an 
intervention, but often they cannot tell us why. We often care about the structural estimates of 
responses, the estimates that tell us about features of utility that drive individual decisions, such as 
substitution and income effects. Randomized or quasi-experimental estimates provide reduced 
form estimates only. 


• Reduced form estimates show the impact of one particular change on overall responses. This 
second disadvantage of randomized or quasi-experiments is thus related to the first: if we 
understood the underlying structure of responses, it might be possible to say more about how 
people would respond to different types of policy interventions. 



Structural Modeling 
• These issues have led to the vibrant field of structural estimation. 

Using this research approach, empirical economists attempt to 
estimate not just reduced form responses to the environment but 
the actual underlying features of utility functions. They do so by 
more closely employing the theory to develop an empirical 
framework that not only estimates overall responses, but also 
decomposes these responses into, for example, substitution and 
income effects.


• Structural models potentially provide a very useful complement to 
experimental or quasi-experimental analyses. Yet structural models 
are often more difficult to estimate than reduced form models 
because both use the same amount of information, yet structural 
models are used to try to learn much more from that information. 



Quantitative support for 
causation

• Model does not have to be truthful, but it has to be useful


• The more of the following conditions are met, the easier is to assign causation


• Effect is significant - not only statistically significant, but also practically significant


• Effect is consistent - same or similar results were achieved by other studies


• Effect is specific - the factor of intereest influences only the response of interest, not 
also 10 other things


• Effect follows time continuity - if x causes y, then x has to happen first


• Effect is monotonous - more x causes more change in y


• Effect is plausible - we know the mechanism behind the effect


• Effect if supported by experimental results





Hypothesis testing
• Statements called statistical hypotheses are key to hypothesis testing. There are two 

types: null hypotheses and research or alternative hypotheses. 


• Null hypotheses have two important characteristics: They are succinct and precise 
assertions about population parameters, such as a mean equals a certain value, a pair 
of proportions does not differ, or a numerical indicator of a relationship between two 
variables is zero. In many research reports, the null hypothesis (H0) is that something 
(for example, a mean or a proportion) equals zero. Hence, the word null-because zero 
represents no effect, such as no difference. 


• In addition to stating a null hypothesis, researchers state another hypothesis called the 
research or alternative hypothesis. Researchers usually hope that they will be able to 
reject the null hypothesis in favor of their research hypothesis. 


• In hypothesis testing-that is, making a decision about a null hypothesis-two kinds of 
mistakes are possible. The first type of mistake, is to reject a true null hypothesis. 
Statisticians call this mistake a type I error. nother possible mistake is failing to reject a 
null hypothesis that is false. This type of error is called a type II error. 



Hypothesis testing
• The term level of statistical significance is used to refer to the probability of making a type I error. The three 

most common levels of statistical significance in political science are .05, .01, and .001


• Recall that if we take many samples to obtain estimates of a population parameter, our estimates will be 
normally distributed and cluster around the true value of the population parameter. Sampling distributions 
tell us the probability that our estimates fall within certain distances of the population parameter. This 
probability is known as the confidence level. The confidence interval refers to the range of likely values 
associated with a given probability or confidence level. Thus, for every confidence level, a particular 
confidence interval exists. 


• The general form of the confidence interval is as follows: 
Estimated parameter value ± standard error x critical value. 


•



More information

• Please have a look a this website, it is very nicely written 
and not too long or technical!


• https://towardsdatascience.com/everything-you-need-to-
know-about-hypothesis-testing-part-i-4de9abebbc8a

https://towardsdatascience.com/everything-you-need-to-know-about-hypothesis-testing-part-i-4de9abebbc8a
https://towardsdatascience.com/everything-you-need-to-know-about-hypothesis-testing-part-i-4de9abebbc8a
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