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Experimental economics
Lecture 6: Descriptive statistics



Choosing suitable statistical methods of analysis
• What is the purpose of my statistical analysis: To provide a descriptive presentation of the data and the treatment 

effects? To make a statistical conclusion concerning the population from which the sample is drawn (inference)? To make 
a prediction based on an estimated model?  What are the main statistical characteristics of the experimental design or 
the resulting data (answers from previous questions)? What analytical methods can be used in view of the main 
statistical characteristics? 


• Data processing: Are there missing values? Multiple measurements: long format vs. wide format; Conversion of the data 
into the format of the statistics software; Are there outliers? Are there subjects who have obviously made arbitrary 
decisions? What are short yet understandable variable names? 


• Creating new variables from (a combination of) already collected variables (e.g. group averages); Creating a list of 
variables with descriptions. 


• Data analysis: Describing the data using key indicators; Graphical representation of the data; Fitting the statistical model 
to the data by estimating the model parameters; Model diagnostics; Making inferences; Predictions using the estimated 
model. 


• Conclusions: Can the treatment effects be verified statistically? Can the model explain the observed data well? Are 
further experimental treatments necessary? 



Describing your data
• The best way to learn about writing a data section is to read several data sections in the literature on your topic 

and pay attention to the kinds of information they contain. Your data section should do at least the following.


• Identify the data source. This means a sentence that explicitly says where your data come from.


• Describe the data source. You should tell your readers such things as the number of observations, the population 
groups sampled, the time period during which the data were collected, the method of data collection, etc.


• State the strengths and weaknesses of the data source. How do your data compare with other data sources used 
in the literature? Does yours provide more observations, and/or more recent observations, than other sources? 
Was the data collected in a more reliable manner? Why is the data source particularly suited (or not) to your 
study? Note any features of the data that may affect your results. Were certain populations overrepresented or 
underrepresented? Is there attrition bias or selection bias? Did the method of data collection change?


• Explain any computations or adjustments you made. Sometimes, a data source does not give you something 
directly; you perhaps had to add/subtract/multiply/divide two given pieces of data to get a third. Describe how you 
constructed your sample. Did you have to eliminate certain kinds of observations, for instance?



Operationalisation of variables
• The result of a measurement is a set of certain variables, i.e. properties that can take on different values. The rules by 

which we assign numerical values = operationalization. We cannot assume that there is always only one correct way to 
operationalise variables. On the contrary, it is up to us how we grasp the variables. Operationalization also depends on 
our research background and our topic.


• The operationalisation has to be consistent - i.e. we cannot measure one participant's age in years and another 
participant's age in months, etc.


• We have to be completely transparent about the operationalisation of our variables. In fact, it is common for student 
papers that readers are not able to understand how the variables are operationalized. Most of the time, this is a problem 
of the researcher, not the reader. 


• In everyday life we too often rely on others to automatically understand what we mean. That it is self-evident, clear from 
the context, etc. To our surprise, this expectation is often completely wrong - misunderstandings arise on a daily basis. 
In science, however, we need to prevent misunderstandings. So nothing is self-evident. All information must be clearly 
and transparently stated.


• When operationalising a variable, it is also essential to reflect on what scale we are measuring the variable - as the same 
variable can be measured on different scales.



Types of variables
• A nominal variable (also categorical or qualitative) does not express quantity. It is merely a numerical designation of a phenomenon. An example might be the color 

of the eyes, which can be, for example, brown (we can code it as "1"); green ("2"); blue ("3"); or other ("4"). However, these are separate qualities that are in no way 
related to their numerical designation. The fact that blue is numbered "3" and green is numbered "2" does not mean that blue has more or less of anything.


• An ordinal variable, unlike a nominal one, already expresses some basic measure of quantity, i.e., some order. For example, if we rank all the students in a class in 
ascending order of height, we can say that the person with the higher number is taller. A typical example of an ordinal scale is a self-report scale, e.g., How 
satisfied are you with the quality of this course? 1 = I am not at all satisfied, 2 = I am rather not satisfied, 3 = I am neither satisfied nor dissatisfied, 4 = I am rather 
satisfied, 5 = I am very satisfied


• The problem with ordinal scales, however, is the fact that we cannot tell how much difference there is in the ranking, i.e. how much is one level different from 
another. We can arrange ordinal variables but cannot add, subtract multiply or divide.


• The quantitative variable (also cardinal) is a real number, unlike the nominal and ordinal variables. The differences between points on the scale are meaningful; we 
can say that the variable has a unit of measurement. We distinguish quantitative variables into two types - interval and ratio variables.


• Interval variables have a standard unit, but they do not have a true zero point to indicate the complete absence of a given quality. The most common example is 
temperature in degrees Celsius (°C). If today is 20 °C and yesterday was 23 °C, the difference between these values is 3 °C, so it is the same difference as 
between 17 °C and 20 °C. On the other hand, 0°C does not imply the absence of any temperature, it is just an agreed value corresponding to the melting point of 
water. So if it is 20 °C today and it was 10 °C last week, it would be strange to say that it is twice as warm today. Numerically it makes sense, but substantively it 
does not. Adding and subtracting interval variables doesn't cause problems, but multiplying and dividing might.


• The second type of quantitative variable is a ratio variable, which is a real number with a true zero point. Examples might be a number (e.g., the number of points 
on a test), a length measured in meters, a reaction time measured in milliseconds, or a heart rate measured in the number of beats per minute. The 0 in these is not 
the agreed thing but the absence of the phenomenon (points, length, duration, heartbeats). We can perform all mathematical operations with a ratio variable.



Measures of central tendecies
• If we want to characterize an entire population with a single data point, it is useful to describe the so-called central tendency (or center of the distribution). In 

addition to the arithmetic mean, the central tendency is also expressed by the modus and the median.


• The arithmetic mean (mean, X̅ , M) of a variable X is calculated by simply summing up all the elements in the dataset, which is then divided by the number of 
elements. The average has its own assumptions and specifics. It can only be used with quantitative data, since we calculate the mean by sum and proportion. 
One of the limitations of the mean is its sensitivity to outliers, i.e., data that are very significantly different from the rest of the set. An outlier can bias the mean 
so that it ceases to describe the center of the data well. A typical example of a variable where the mean is affected by outliers is financial income (wage) in the 
population. If we are trying to compare our wage with wages of other people in the country, the average wage figure will not be very useful to us, since a 
relatively small number of high-income individuals distort the mean so that its value is higher than what most people earn. Thus, if we were to think of the 
average wage as the middle wage of a person in this country, we would be wrong. The median would be more useful to us here.


• The median (X,̃ Md) is a central value of the data in the set. If we arrange the values of all the elements in the set, the median will be exactly in the middle, 
dividing the set into two equally sized halves. In other words, half of the cases will have a value higher than the median and half of the cases will have a value 
lower than the median. So if I find that my wage is higher than the median, I know that majority of people in the country are earning less. 


• If we had a set with the values: 12, 13, 15, 18, 21, the median value is 15. If we have an even number of elements, we will not have one middle value in the set, 
but two. In that case, the median is their average. For example, in a set with the values: 11, 13, 14, 15, 16, 21, the median is 14.5. The median is more suitable 
for presentation of ordinal data. At the same time, unlike the mean, the median is not sensitive to outliers in the data, so it may be a more appropriate measure 
of the central tendency when we are working with data that contains outliers. On the other hand, the median may underestimate the importance of important 
values at the extremes of the distribution.


• Modus (Mode) is a relatively simple statistic. It is the most frequently occurring value in the set. It can be applied to any data, including qualitative data. In some 
datasets we can obtain multiple modal values, we refer to them as multimodal (bimodal in the case of two modes). However, it is important to note that the 
informational value of a mode is limited because it does not reflect the distribution of the other values in any way, and so it may be that the mode is not a good 
representation of the whole dataset.



Measures of variability
• The statistics we have worked with so far have served to characterize the distribution based on its central tendency. Measures of variability answer the question of how 

far apart the data are, or how far from the mean our data occur.


• The range of a variable expresses the difference between the highest and lowest values. We can describe the data by the minimum and maximum. It is a very simple 
description of the variability, and it can be very imprecise since the range includes very distant values. Moreover, the range does not capture the relative frequencies of 
each value, so we cannot tell how frequent which values are.


• The interquartile range (IQR) is the range of the middle 50% of all data, which is the range between the first and third quartiles (or the 25th and 75th percentiles). If we 
divide ordered data into four equal parts, we obtain values of quartiles. If we arranged them by size and divided them into 100 parts, we would obtain the percentiles. The 
boundary of the 1st and 2nd quartiles, which represents the 25th percentile, bounds the lowest 25% of the values in the set. The 50th percentile is the median, since it is 
the value that divides the data into two equally sized halves. The 75th percentile is the boundary between the third and fourth quartiles, so it bounds the top 25% of 
values.


• The standard deviation (SD, s) is probably the most common indicator of variability, which is usually presented together with the mean. When working with quantitative 
data (interval, ratio), we can express variability in terms of deviations from the mean. It can be calculated as the difference between each value in the set and the mean. 
Since some deviations are positive and some are negative, summation would reset them to zero. Thus, we work with squares of the deviations, and we sum them.


• Although the sum of the squares of the variances gives us the total variability, it is dependent on the number of elements in the dataset. To standardize it, we need to 
divide it by the number of degrees of freedom (df), which is the number of observations minus 1 (N - 1). This gives the variance (variance, s2, σ2).


• Since it does not make much sense interpretatively to talk about squares of the variances, it is convenient to calculate the root square of the variance. This gives us the 
standard deviation, which is again expressed in the original units. The standard deviation thus tells us how much our data "deviates from the mean" on average.


• The symbols SD and s represent the standard deviation estimated from the sample. The symbol σ represents the hypothetical standard deviation in the population. In 
most cases we do not know it exactly, as we do not have data from the whole population, we only approximate it. It is the same with the symbols denoting the variance 
(s2, σ2).



Random Variables and Their Distribution 
• In the statistical modeling of the relationship between variables, the dependent variable is interpreted as a random variable. Which values of a 

random variable are most likely and which are less likely is determined by their distribution. The so-called density function of a discrete random 
variable indicates the probability with which a certain value occurs. The outcomes of rolling a dice, for example, are evenly distributed, each with a 
respective probability of 1/6. 


• In the case of a continuous random variable, such as the time it took the subject to make his decision, the probability of an individual value cannot 
be specified. If an infinite number of values exist, the probability of a single value must be infinitely close to zero. For this reason, with continuous 
variables, it is only possible to indicate specific probabilities for ranges of values, with the total area below the density function always being 1. The 
cumulative (continuous) distribution function is, mathematically speaking, the integral of the continuous density function. The value of the function at 
a point x thus indicates the probability with which the random variable assumes a value less than or equal to x. 


• Most statistical distributions have certain parameters which, depending on the value they have been set to, determine the shape of the density 
function. The three most important parameters are expected value, variance and degree of freedom. The expected value is the average of all the 
values drawn, if we (theoretically) draw a random sample infinitely often under the given distribution. For example, since there is an equal probability 
of rolling each number on a (normal) dice, the expected value is 1/6 ∙ (1 + 2 + 3 + 4 + 5 + 6) = 3.5. The expected value of a distribution is a location 
parameter that provides information about where the theoretical mean value is located on the number line. The variance is the mean square 
deviation of all the realizations of the expected value and thus represents information about the dispersion of the random variable. The greater the 
variance, the wider and flatter the density function. 


• The mother of all distributions is the normal distribution. Its parameters are the expected value μ and variance σ2. The probability density is bell-
shaped and symmetrical around μ, where it has the highest density function value. Other important distributions are not parameterized directly using 
expected value and variance, but indirectly using what is termed degrees of freedom, which influence the expected value and/or variance. The 
(Student’s) t-distribution, for example, has such degrees of freedom, with the shape of its density function more and more closely approximating that 
of the density function of the standard normal distribution with increasing degrees of freedom. 



Random Variables and Their Distribution 



Descriptive statistics
• Data sections often contain a table of descriptive statistics, statistics of relevance about the sample. These 

statistics usually include the mean (e.g., mean income, mean age, mean years of schooling, etc.) and standard 
deviation. For categorical data (like race), however, you do not report a mean; instead, you report the percentage 
of the observations in each group. 


• Expected value - The mean or average value of a sample statistic based on repeated samples from a population. 


• Standard errors - The standard deviation or measure of variability or dispersion of a sampling distribution. The 
larger the sample, the smaller the standard error. 


• Sampling distributions - A theoretical (non-observed) distribution of sample statistics calculated on samples of 
size N that, if known, permits the calculation of confidence intervals and the test of statistical hypotheses.


• NOTE: The mean and standard deviation work well for normal (bell curve shaped) distribution. If dealing with 
other distributions, it may be more useful to use median or mode to describe central tendency (expected value). 



Plotting your data
• A well-constructed graph can answer several questions at one time: 


• Central tendency: Where does the center of the distribution lie? 


• Dispersion or variation: How spread out or bunched up are the observations? 


• The shape of the distribution:  Does it have a single peak (one concentration of observations within a relatively narrow 
range of values) or more than one?


• Tails: Approximately what proportion of observations is in the ends of the distribution or in its tails? 


• Symmetry or asymmetry (also called skewness): Do observations tend to pile up at one end of the measurement scale, 
with relatively few observations at the other end? Or does each end have roughly the same number of observations? 


• Outliers: Are there values that,compared with most, seem very large or very small?


• Comparison: How does one distribution compare to another in terms of shape, spread, and central tendency? 


• Relationships: Do values of one variable seem related to those of another? 



Choosing the right chart



Histogram
• When working with quantitative variables, rather than displaying the frequencies of individual values, we 

may try to display the shape of the distribution and the data through the frequencies at certain intervals of 
values. Histograms are used for this purpose. In a histogram, the x-axis divides all possible values into 
intervals, and the height of the bar then shows the frequency (or relative frequency) of the measured values 
in that interval.


• The histogram thus gives us a good idea of the overall distribution of the data. Within the data distribution, 
we can assess its symmetry of densities, clusters, gaps (missing data), the occurrence of outliers, and the 
shape of the distribution.


• We also describe the shape of the distribution through numerical measure of skewness. We can also note 
the number of peaks (the most frequent interval of values) in the histogram. Although we most often expect 
one peak (unimodal shape), it may happen that there are two peaks (bimodal shape) or more than two 
peaks (multimodal shape). A histogram with two peaks (clearly distinguishable, of course, as if we had two 
bell shapes side by side) arises, for example, when the data come from two different distributions (e.g., 
they are not one but two different populations), and therefore these different distributions need to be 
identified and plotted separately.



Histogram



Histogram



Cummulative distribution



Bar chart
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Box plot
• A box plot is also one of the graphs used to display quantitative data. It is composed of five values:


• minimum (the lowest value of a variable)


• lower quartile (Q1, 25th percentile)


• median


• upper quartile (Q3, 75th percentile)


• maximum (highest value of the variable).


• In other words, at the center of this graph is the median, which is surrounded at the top and bottom by a "box", and 
the space of the box makes up 50% of the observations (the inter-quartile range).


• The whiskers pointing up and down from the boxes denote scores of Q3 + 1.5 interquartile range (IQR) and Q1 + 1.5 
IQR, respectively. The points above/below represent the so-called outliers, i.e., values further than 1.5 IQR from the 
value bounding Q3.



Box plot



Line chart
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Scatter plot



Scatter plot



Statistical inference
• In exploring the world around us, our goal may be to simply describe the phenomenon under investigation. We might ask, for example, what percentage of those surveyed were men? 

What was their minimum, maximum and average age? But sometimes we want to generalize our findings beyond our research set and the data we have available. This is called 
statistical inference. In inferential statistics, we make inferences about population-level relationships or differences based on the data collected in our research set.


• Using inferential statistics, we can ask many questions that we would like to explore, formulate a large number of different hypotheses that we would like to test, and use many different 
techniques and particular types of analysis. How can we simplify this? We can try to establish some general categories of inferential statistics - relational and differential statistics, and 
explore the dominant approach of statistical inference - testing the null hypothesis. Differential and relational statistics are two sides of the same coin, but this division can make it 
easier to think about some problems and bring some system to our thinking.


• For relational statistics, we will be interested in whether there is a relationship between two variables at the population level and how close that relationship is. For example, we can 
assume that the taller a person is, the more the person will weight. Thus, within the framework of relational statistics, we will focus on the joint variation - covariance - of the measured 
values. For example, we may conduct cross-sectional research where we administer a questionnaire to participants measuring five personality traits and other variables. In the context 
of the Big Five personality trait model, we might assume, for example, that the more open people are to experience (the higher their scores on a given dimension of the Big Five model), 
the more positive their attitudes will be toward less conservative methods of teaching statistics, or the higher their scores on the negative emotionality dimension, the less subjective 
well-being they will experience prior to enrolling in statistics course (i.e., we assume a negative relationship between negative emotionality and subjective well-being).


• In contrast, in differential statistics, we will be interested in the difference between groups or conditions. For example, we may assume that men will be taller than women. The question 
is posed differently here than in the previous case, and more along the lines of whether there is a difference between the groups, and how large that difference is. For example, in the 
context of designing interventions that improve the mental health of female and male students, we might assume that female and male statistics students who undergo training in a 
particular type of relaxation (e.g., Jacobson's progressive relaxation) will be better off in terms of their level of experienced anxiety than those who do not practice the relaxation 
method. We will design a simple experiment where we will randomly assign interested participants to experimental and control groups (between-subject experiment). With the 
experimental group we will practice the relaxation method once a day, while with the control group we will only meet, but will not practice relaxation. After one month, we will compare 
the two scores in subjectively experienced anxiety.


• However, we do not necessarily have to divide participants into groups. Instead, we may find it convenient to have them all complete all the interventions, but in a different order (a so-
called within-subjects experiment). In the context of advertising effectiveness research, for example, we might assume that a humorous advertisement for a statistics book would be 
evaluated more positively than that of a neutral advertisement. We then show each participant/participant in our research a neutral and a funny advertisement in random order. For each 
of these, they will indicate how positively they rate the statistics book shown in the advertisement. Finally, we compare the product evaluations of the same participant under both the 
funny and neutral condition.



Pearson correlation
• The assessment of the degree of association between two variables is typically a measure of correlation. The basic measure 

here is the Pearson correlation, which measures the degree of linearity of the bivariate relationship between the two variables. 


• The Pearson correlation is a standardised covariance (i.e. the ratio of the covariance between the two variables to the product 
of their variances). The Pearson correlation is bounded below by –1 (a perfect negative linear relation) and above by 1 (a 
perfect positive linear relation). 


• The Pearson correlation is not affected by changes in either the scale (e.g. multiply variables by 2) or the location (e.g. add a 
constant) of the variables. Two independent variables have a correlation coefficient of 0. However, a finding of zero correlation 
between two variables can only be interpreted as indicating independence in special cases, such as the bivariate normal 
distribution. Using the Pearson correlation would be misleading here, due to its underlying assumption of linearity. 


• Figure on the next slide presents Anscombe’s quartet, a series of four data sets constructed by Anscombe (1973) to underline 
the importance of visualising the data before carrying out statistical analysis. Each data set consists of 11 pairs of points with 
a Pearson correlation of 0.816. The mean of the first variable (on the x-axis) is always 9, with a sample variance of 11. The 
mean of the second variable is approximatively 7.50, with a sample variance of between 4.122 and 4.127. Pearson correlation 
makes sense only in panel (a), for normally distributed data with a linear relationship. In panel (b) the relationship is clearly non-
linear. Panels (c) and (d) show how the Pearson correlation is sensitive to outliers. In panel (c), without the outlier, the 
correlation is 1. One single outlier suffices to reduce this to 0.816. In panel (d), the correlation without the outlier is 0 but one 
single outlier suffices to increase this to 0.816. 



Pearson correlation


